

The Power of Photonic Quantum Computing for HPC

www.qant.com

Unlocking the Power of Photonic Quantum Computing for HPC

The landscape of high-performance computing is undergoing a seismic shift. Quantum computing enters as the game-changer that holds the potential to reshape the way we process data to analyze and solve complex problems. Quantum computing transcends the limitations of classical computing systems, opening up new horizons for discovery and innovation in various fields such as science, engineering, artificial intelligence, finance, and healthcare. Photonic chips and processors from Q.ANT easily and securely integrate to HPC architectures and data processing centers for hybrid computing. Embark on our quantum-powered adventure into the future of high-performance computing! Let's dive in and unlock the quantum advantage.

Q.ANT's photonic processors integrate seamlessly into federation clusters by kubernetes

We empower users to discover optimal abstractions, high-performance algorithms and photonic processor architectures for complex challenges

		Photonic quantum processor	Photonic processor	Photonic processor
···· 	Application	Molecular docking	Flight gate assignment problem	Maschine learning and Al
	Abstraction	Max-Clique	QUBO	Vector-matrix multiplication
œ	Algorithm	Gaussian Boson Sampling	All-optical coherent Ising machine	MZI matrix Core
₿	Processor Architecture	20 mode GBS processor	20 mode interferometer with feedback	4 mode interferometer

Q.ANT's algorithms and photonic processors are accessible through the cloud

The Q.ANT Blackcat Simulator accelerates Hafnian computation by factor 250

Hafnian calculation performance of Blackcat vs. 20 core CPU

PICChar is Q.ANT's software framework for developing photonic processors and applications

It provides a collection of tools, libraries, and APIs that enable developers to experiment with photonic processors from Q.ANT, develop algorithms, and build applications.

Integrated squeezed photon sources will revolutionize photonic quantum processing performance by more than one order of magnitude

		Q.ANT squeezed- photons architecture	Single-photon architecture I	Single-photon architecture II	Squeezed-photons architecture
	Reference	Target 2024	A general-purpose single- photon-based quantum computing platform (2023)	20 Mode Universal Quantum Photonic Processor (2023)	Quantum circuits with many photons on a programmable nanophotonic chip (2021)
QUANTUM SOURCE	Туре	On-chip squeezing (SPDC in microresonators) Q > 1,000,000, SPDC 1550 nm, Squeezing: 10 dB	External single-photon source InGaAs quantum dot, 5K, 928 nm	External photon-pair source (PDC) TiSapph + PPKTP (type II), 1562 nm, Schmidt number 1.1	On-chip squeezing (FWM in microresonators) Q = 700,000, FWM 1550nm, Squeezing: 8 dB
	Generation rate	1 MHz	80 MHz		100 kHz
مہم التال	Detection rate	2-photon : 550 kHz 4-photon: 200 kHz 6-photon : 81 kHz 10-photon : 15 kHz 12-photon : 6 kHz	2-photon : 80 kHz 4-photon: 0,7 kHz 6-photon : 0,004 kHz 12-photon : 200 nHz (calc.)		4-photon: 10 kHz 10-photon: 0,3 kHz
	Material	LNOI	Si ₃ N ₄	Si ₃ N ₄	Si ₃ N ₄
CIRCUIT	Number of modes	4	12 (max 6 occupied)	20 (max 2 occupied)	2x4 (max 8 occupied)
	Beamsplitter	electro-optic	thermo-optic	thermo-optic	thermo-optic
EFFICIENCY	Total efficiency	40 %	8 %	48 %	15%
	SM fiber-chip couppling	85%	70 %	81%	_
	Chip transmission	50 %	45 %	77 % (0.07 dB/cm)	50 % (0.2 dB/cm)
لللللم	Cooling power	<1W		200 W available	1W required for unitary transformation

Quantum Photonic Processor

Technical Data Sheet System Specifications

System specifications	2023	2024	
Clock frequency	500 kHz	1 MHz	
PIC operation temperature	22°C stabilized @ <0,1°C	22°C stabilized @ <0,1°C	
System operating temperature	Room temperature +10°C ≤ T ≤ +40°C	Room temperature +10°C ≤ T ≤ +40°C	
System dimensions	Control 1x3U 19" Rack Mount	Control 2x5U 19" Rack Mount	
System power consumption	40 W @ 240V	< 1kW @ 240V	

Q.ANT GmbH | Handwerkstraße 29 | 70565 Stuttgart, Germany +49 711 45969613 | info@qant.de | www.qant.com

