Press Release

Duquesne Family Office Invests in Q.ANT to Drive Sustainable, Photonic AI Infrastructure

Strategic Investment positions Q.ANT's photonic Native Processing Server as one of Europe's Best-Funded emerging AI Accelerator Technologies

Stuttgart, Germany – October 30, 2025 – <u>Q.ANT</u>, a pioneer in photonic processing for artificial intelligence (AI) and high-performance computing (HPC), today announced the second closing of its Series A funding round securing an additional investment from Duquesne Family Office LLC, the investment firm of Stanley F. Druckenmiller. The raise brings Q.ANT's total funding to US\$80M – the largest financing round for photonic computing in Europe. The funds will help accelerate commercialization of Q.ANT's light-based processors, drive next-stage technology development to improve AI infrastructure and support the company's expansion into the U.S. market. To further enhance its strategic expertise, Q.ANT welcomes Sue Meng, Managing Director at Duquesne Family Office, as an observer to its advisory board.

The Duquesne Family Office joins current lead investors: <u>Cherry Ventures</u>, <u>UVC Partners</u> and <u>imec.xpand</u> and other deep tech investors, including <u>L-Bank</u>, <u>Verve Ventures</u>, <u>Grazia Equity</u>, <u>EXF Alpha</u> of <u>Venionaire</u> <u>Capital</u>, <u>LEA Partners</u>, <u>Onsight Ventures</u>, and <u>TRUMPF</u>.

The race to expand global AI infrastructure has made semiconductor chips both a strategic asset and a geopolitical lever. Worldwide spending on AI-related data centre infrastructure is projected to exceed \$5.2 trillion¹ over the next five years. But this explosive growth comes with a hard limit: energy. As the world's data centres consume increasing shares of national power grids, efficiency has become the defining constraint on progress.

Q.ANT addresses this challenge at its foundation. By computing natively with light, its photonic processors deliver the precision and performance AI and HPC demand with only a fraction of the energy required by electronic chips. The result is scalable, sustainable computing for the next generation of data-intensive systems.

"Al is pushing the limits of global resources - energy, hardware, and capital," said Dr. Michael Förtsch, founder and CEO of Q.ANT. "At Q.ANT, we achieve performance through efficiency, not brute power alone, redefining how Al can scale. The Duquesne Family Office shares our conviction that sustainable computing will define the next era of progress."

.

¹ The **\$5.2 trillion figure** comes from a **McKinsey forecast** cited in The Economist (Sept 30, 2025).

Q.ANT

Press Release

Precision, performance and integration – for the first time in an analog processor

In just five years, Q.ANT has brought to market the world's first commercial photonic processor for real-world AI and HPC workloads, an achievement scientists have pursued for decades. Built on the material Thin-Film Lithium Niobate (TFLN), the Q.ANT Native Processing Server (NPS) integrates seamlessly into today's data centers as a plug-in co-processor. Early benchmarks show up to 30x greater energy efficiency, 50x performance gains, and the potential to increase data center capacity by 100x – all without active cooling.

Q.ANT achieves 16-bit floating-point accuracy, equivalent to modern digital processors, while retaining the continuous advantages of analog computing. It is the first company to combine this level of precision, performance, and industry integration in one sustainable computing platform.

Industry experts: Photonic Processing Key to Meeting GenAl Compute Demands

Leading industry analyst firm Gartner states that "conventional computing systems are severely constrained when it comes to solving the emerging information processing challenges posed by GenAl." In its Emerging Tech: Emergence Cycle for Generative AI report², Gartner states "Photonic computing has several potential benefits over electronic computing, including increased bandwidth, processing power and storage, all while keeping energy and power consumption under control."

Future made tangible - Native Processing Server ready for Data Center Deployment

Q.ANT's mission is to redefine AI infrastructure with light-based processors that deliver higher performance using a fraction of the energy required by electronics. By 2030, the company aims to make photonic processing a foundational pillar of global AI systems, radically improving scalability and energy efficiency. Engineered for seamless integration, Q.ANT's Photonic NPS is now being evaluated by leading supercomputing datacenters. Fully compatible with today's programming languages and AI software frameworks, the Q.ANT NPS delivers higher compute density, eliminates on-chip heat, and consumes far less energy - a critical step toward sustainable, high-performance computing.

###

About Duquesne Family Office

About O.ANT

Duquesne Family Office is the investment firm of Stanley F. Druckenmiller.

-	 ~ ·		

² Source: Emerging Tech: Emergence Cycle for Generative AI - By Nick Ingelbrecht, Menglin Cao, Anthony Bradley, Eric Goodness, Jim Hare, Tuong Nguyen, Anushree Verma, Vibha Chitkara, Danielle Casey, Gartner Inc. GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Press Release

Q.ANT is a photonic deep-tech scale-up developing photonic processing solutions that compute natively with light and deliver a scalable alternative to transistor-based systems. Its Light Empowered Native Arithmetic (LENA) architecture delivers analog co-processing power optimized for complex computation and enabling energy-efficient performance for next-generation AI and HPC applications. Q.ANT operates its own Thin-Film Lithium Niobate (TFLN) chip pilot line in collaboration with the Institute for Microelectronics Stuttgart, IMS CHIPS, and is currently shipping its Native Processing Servers to selected partners. Founded in 2018 by Dr. Michael Förtsch, Q.ANT is headquartered in Stuttgart, Germany.

Images and captions

Please note: Higher resolution images and headshots are available by request

Michael Förtsch, CEO and founder of Q.ANT

Media Contacts:

For Duquesne Family Office

H/Advisors Abernathy
Shawn Pattison
Shawn.Pattison@h-advisors.global | +1 212-371-5999

For Q.ANT

USA: Toni Sottak **EUROPE:** Edith Laga Wired Island International Q.ANT PR